Direct Strength Method for Web Crippling of Cold-formed Steel C- and Zsections Subjected to One-flange Loading Martin Dara

Image

Cold-formed steel flexural members can experience buckling failure at the web when compressive loads are applied to the flanges. Determining the web crippling strength analytically can be difficult because it depends on various parameters including loading conditions, bearing length, thickness of the material, web inclination, flange lengths etc. Due to these parameters, the current design method was developed based on the experimental data only. The paper presents an attempt to develop a semi-analytical design approach for the web crippling strength using the Direct Strength Method concept. The focus is on the cold-formed steel C and Z sections subjected to onflange loading conditions. The research indicates that the Direct Strength Method is appropriate for predicting the web crippling strength. New design equations are proposed and verified by with the experimental results.

Web crippling is an important limit state in the structural design of cold-formed steel (CFS) flexural members. Due to the large slenderness ratio, the web element of CFS members tends to cripple at the areas of compression loads or bearing supports. The North American Specification for Cold-Formed Steel Structural Members defines four loading cases for web crippling: End-One-Flange (EOF) loading, Interior One-Flange (IOF) loading, End-Two-Flange (ETF) loading and Interior Two-Flange (ITF) loading.

Impact Factor: 0.64*

ISSN: 2472-0437

Current Issue: Volume 5: Issue 1

Journal of steel structures and construction welcomes submissions with cutting-edge research in the field of Steel. Unsolicited manuscripts including research articles, commentaries, and other reports will also be considered for publication and should be submitted either online or through mail.

You may submit your paper as an attachment at steelstructures@oajournal.org  or steelstruct@businessjournal.org

Online Submission:

Submit your Manuscript online https://www.scholarscentral.org/submissions/steel-structures-construction.html or by mailing to us at steelstructures@oajournal.org

Author Information: Complete names and affiliation of all authors, including contact details of corresponding author (Telephone, Fax and E-mail address).

Best Regards,
Rosie Elizabeth,
Editorial Manager,
Journal of Steel Structures and Construction